

INVERTER

Pompe di Calore ad alta temperatura per riscaldamento, raffrescamento e produzione di acqua calda sanitaria

Pompe di Calore ad alta temperatura per riscaldamento, raffrescamento e produzione di acqua calda sanitaria

COMPRESSORE ROTATIVO EC

IN RISCALDAMENTO

ACS AD ALTA **TEMPERATURA**

Caratteristiche tecniche e costruttive

HPE R290 06÷16T è una gamma di pompe di calore composta da 5 taglie di potenza e 7 modelli, equipaggiati con un compressore inverter di ultima generazione in grado di soddisfare nel modo più efficiente le richieste di potenza frigorifera, termica e produzione di ACS in edifici di tipo residenziale o light commercial. Grazie all'utilizzo dell'R290, le pompe di calore HPE R290 garantiscono elevate prestazioni con ampi campi di lavoro.

Le alte efficienze stagionali e il bassissimo GWP ne fanno il prodotto ideale per il raggiungimento del benessere termoigrometrico nel pieno rispetto dell'ambiente.

Tutti i modelli, che accedono agli sgravi fiscali offerti dalla legislazione vigente, sfruttano alcune delle tecnologie più innovative nel campo del condizionamento dell'aria: le unità sono infatti full inverter e l'impiego esteso di motori elettrici a magneti permanenti pilotati da inverter in corrente continua anche nei componenti accessori quali ventilatori e circolatore idraulico permette di ridurre drasticamente la potenza elettrica assorbita.

Il quadro elettrico ermeticamente sigillato garantisce inoltre maggiore affidabilità e sicurezza.

Grazie alle avanzate strategie di gestione implementate, l'elettronica di controllo integra il funzionamento dei componenti chiave delle unità ottimizzando l'interazione tra gli organi principali: compressore, ventilatore e circolatore idraulico.

L'R290 (il propano) è un refrigerante naturale.

Il suo bassissimo valore di GWP, pari a 3, lo rende la soluzione ottimale per contribuire a ridurre l'impatto ambientale dei gas ad effetto serra e quindi il surriscaldamento del pianeta.

Inoltre, per le sue caratteristiche tecniche, consente di ampliare il campo di lavoro delle pompe di calore, consentendone l'utilizzo anche in condizioni estreme e molto rigide, garantendo la produzione di acqua ad alta temperatura.

Arriviamo a garantire una temperatura dell'acqua in uscita di 50°C anche con temperature esterne di -25°C, per arrivare ad un massimo di 75°C a partire già da -10°C.

PLUS

- Compressore twin-rotary azionato da motore elettrico EC
- Pompa idraulica EC
- Ventilatore assiale EC
- Strategie avanzate di regolazione e gestione dell'impianto
- Refrigerante naturale a bassissimo GWP

Modello	Potenza Frigorifera kW	Potenza Termica kW	Codice	€
HPE R290 06 INVERTER	6,80	6,40	37980086	7.998,00
HPE R290 08 INVERTER	7,50	8,20	37980087	8.568,00
HPE R290 10 INVERTER	8,90	10,0	37980088	8.865,00
HPE R290 12M INVERTER	11,5	12,0	37980089	11.143,00
HPE R290 12T INVERTER	11,5	12,0	37980090	11.650,00
HPE R290 16M INVERTER	14,0	15,0	37980091	11.900,00
HPE R290 16T INVERTER	14,0	15,0	37980092	12.392,00

Incentivo Conto Termico Totale

Modello Booster	Zona climatica Zona climatica Zo		Zona climatica Zona climatica		Zona climatica	Zona climatica
	Α	В	C	D	E	F
HPE R290 06 INVERTER	652 €	923 €	1.194 €	1.520 €	1.846 €	1.846 €
HPE R290 08 INVERTER	887 €	1.257 €	1.626 €	2.070 €	2.513 €	2.661 €
HPE R290 10 INVERTER	1.039 €	1.472 €	1.905 €	2.425 €	2.944 €	3.117 €
HPE R290 12M INVERTER	1.254 €	1.777 €	2.299 €	2.926 €	3.553 €	3.762 €
HPE R290 12T INVERTER	1.254 €	1.777 €	2.299 €	2.926 €	3.553 €	3.762 €
HPE R290 16M INVERTER	1.530 €	2.168 €	2.805 €	3.570 €	4.335 €	4.590 €
HPE R290 16T INVERTER	1.530 €	2.168 €	2.805 €	3.570 €	4.335 €	4.590 €

^{*} Incentivi usufruibili solo in ottemperanza alle modalità descritte dal D.M. 16/02/2016 e fino al raggiungimento del tetto massimo stanziato dal GSE. Anni di erogazione 2, se inferiore a 5.000 € verrà erogato in un'unica rata

Pompe di Calore ad alta temperatura per riscaldamento, raffrescamento e produzione di acqua calda sanitaria

Accessori HPE R290 06÷16T INVERTER

Codice

€

U

Prima accensione HPE R260 06÷16T

37980093

618,00

Comando remoto a parete a filo con sensore di temperatura, programmazione settimanale, gestione dei parametri di funzionamento, visualizzazione dei codici di errore, funzione smart grid e modulo wi-fi integrato per il controllo e il monitoraggio gestibile tramite applicazione

DI SERIE

Valvola a 3 vie per ACS

37980095

538,00

Attuatore per valvola a 3 vie

37980094

464,00

Puffer POWER UNIT Accumulo di acqua tecnica inerziale compatto fornito di serie con rubinetto di scarico, valvola jolly e valvola di sicurezza

POWER UNIT 80 LT - H 160 76011500 1.580,00 **POWER UNIT 105 LT - H 210** 76012500 1.680,00 **POWER UNIT 130 LT - H 250** 76011501 1.740,00 **POWER UNIT 165 LT - H 160 D.** 76011505 1.890,00 **POWER UNIT 220 LT - H 210 D.** 76012502 1.990,00 **POWER UNIT 315 LT - H 170** 76012503 2.100,00

Modelli	U.M.	80 LT	105 LT	130 LT	165 LT D.	220 LT D.	315 LT
Larghezza totale	mm	340,5	340,5	340,5	594,6	594,6	803,4
Profondità totale	mm	340,5	340,5	340,5	340,5	340,5	461,1
Altezza totale	mm	1656,2	2156,2	2524,3	1656,2	2156,2	1690,0
Attacchi PdC		1" 1/4 x 2					
Attacchi circuito secondario		1" 1/4 x 2					
Attacchi resistenza elettrica		1" 1/2 x 2					
Attacco valvola jolly		3/8"	3/8"	3/8"	3/8"	3/8"	3/8"
Attacchi valvola di sicurezza		1/2" x 2					
Attacchi rubinetto di svuotamento		1/2" x 2					
Pozzetto porta sonda		1/2" x 3					
Volume	I	79,2	105,0	132,0	166,5	224,4	314,2
Peso a vuoto	kg	57,4	74,7	86,9	102,0	121,0	230,0

Pompe di Calore ad alta temperatura per riscaldamento, raffrescamento e produzione di acqua calda sanitaria

Accessori HPE R290 06÷16T INVERTER

Codice

€

Serbatoio di accumulo WP1 V Bollitore vetroporcellanato con scambiatore maggiorato per pompa di calore

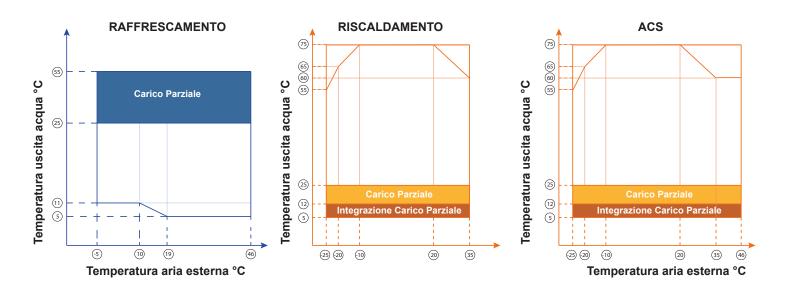
WP1 V 200 I	37304007	1.630,00
WP1 V 300 I	37304000	2.250,00
WP1 V 400 I	37304001	2.830,00
WP1 V 500 I	37304002	3.100,00
WP1 V 600 I	37304003	3.550,00
WP1 V 800 I	37304004	4.300,00
WP1 V 1000 I	37304005	4.490,00
WP1 V 1500 I	37304006	7.640,00

Modelli	U.M.	200	300	400	500	600	800	1000	1500
Diametro esterno*	mm	550	600	750	750	750	1050	1050	1260
Altezza totale	mm	1320	1610	1410	1660	1910	1750	2110	2115
Scambiatore PdC	m ²	2,1	3,5	4,5	5,7	5,7	6,0	6,0	7,50
Attacchi ricircolo		1/2"	1/2"	1/2"	1/2"	1/2"	1"	1"	1"
Entrata PdC		1"	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4
Uscita PdC		1"	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4
Peso a vuoto	kg	78	110	133	159	167	215	251	383

^{*} Tutti gli isolamenti sono rimovibili tranne per i modelli da 200 a 600 litri

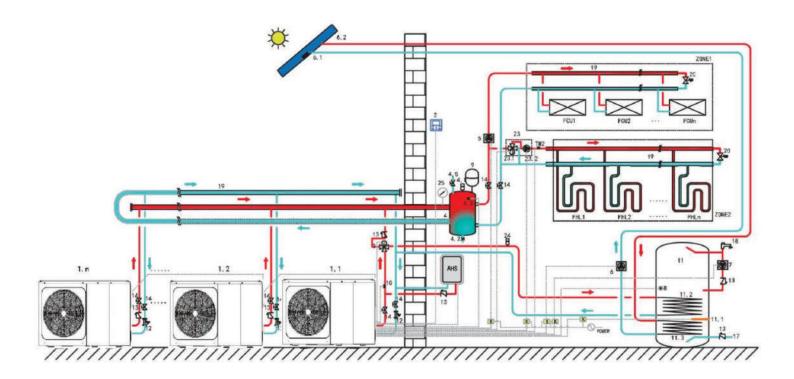
Serbatoio di accumulo WP2 V Bollitore vetroporcellanato con scambiatore maggiorato per pompa di calore e scambiatore per solare termico

WP2 V 300 I	37304298	2.660,00
WP2 V 400 I	37304299	2.880,00
WP2 V 500 I	37304300	3.480,00
WP2 V 600 I	37304301	4.310,00
WP2 V 800 I	37304302	4.720,00
WP2 V 1000 I	37304303	5.490,00
WP2 V 1500 I	37304304	8.570.00

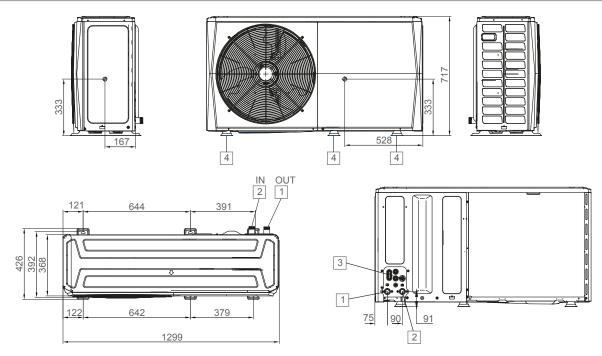

Modelli	U.M.	300	400	500	600	800	1000	1500
Diametro esterno*	mm	500	650	650	650	790	790	1000
Altezza totale	mm	1610	1410	1660	1910	1750	2110	2115
Scambiatore inf. Sol.	m ²	1,0	1,2	1,5	2,0	2,0	3,3	3,6
Scambiatore sup.PdC	m ²	2,4	3,0	4,2	5,0	5,2	6,0	7,5
Attacchi ricircolo		1/2"	1/2"	1/2"	1/2"	1"	1"	1"
Entrata PdC		1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4
Uscita PdC		1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4
Peso a vuoto	Kg	108	128	159	188	234	285	417

^{*} Tutti gli isolamenti sono rimovibili tranne per i modelli da 300 a 600 litri

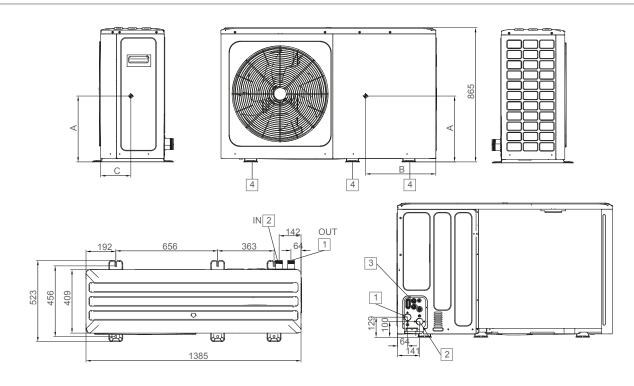
Pompe di Calore ad alta temperatura per riscaldamento, raffrescamento e produzione di acqua calda sanitaria


Campo di lavoro esteso per ogni applicazione

Le pompe di calore della HPE R290 06÷16T INVERTER sono state progettate per garantire la massima flessibilità in ogni applicazione. Grazie all'esteso campo di lavoro, che ne assicura il funzionamento anche in climi particolarmente rigidi e permette di produrre acqua calda fino ad un massimo di 75°C, e alle avanzate logiche di regolazione offerte dal nuovo controllo elettronico, sono in grado di garantire sia il riscaldamento invernale e la climatizzazione estiva, sia la produzione di energia termica da utilizzare per la produzione di acqua calda sanitaria. Grazie all'utilizzo del propano, HPE R290 06÷16T INVERTER riesce a garantire acqua calda a 55°C con temperatura esterna di -25°C, fino ad arrivare a un massimo di 75°C con una temperatura esterna minima di -10°C.


Esempio applicativo HPE R290 06÷16T INVERTER

Con HPE R290 06÷16T INVERTER sarà possibile collegare fino a 6 macchine in cascata, e gestire fino a due differenti zone. Allo stesso tempo è possibile la gestione diuna valvola a tre vie esterna per la gestione della produzione di acqua calda sanitaria.


Pompe di Calore ad alta temperatura per riscaldamento, raffrescamento e produzione di acqua calda sanitaria

Dimensioni HPE R290 06 INVERTER

- Uscita acqua utenza 1"
- Ingresso acqua utenza 1"
- 1 2 3 4 Uscita valvola di sicurezza 16 mm
- Supporto antivibranti

Dimensioni HPE R290 08÷16T INVERTER

Modello	Α	В	С
	mm	mm	mm
HPE R290 08 INVERTER	360	550	234
HPE R290 10 INVERTER	360	550	234
HPE R290 12M INVERTER	415	715	200
HPE R290 12T INVERTER	415	715	200
HPE R290 16M INVERTER	415	715	200
HPE R290 16T INVERTER	415	715	200

- Uscita acqua utenza 1" 1/4
- Ingresso acqua utenza 1" 1/4
- Uscita valvola di sicurezza 16 mm
- 2 3 4 Supporto antivibranti

Pompe di Calore ad alta temperatura per riscaldamento, raffrescamento e produzione di acqua calda sanitaria

Tabella dati tecnici HPE R290 06÷16T INVERTER

DESCRIZIONE	U.M.	06	08	10	12M	16M	12T	16T
Potenza frigorifera (1)	kW	6,80	7,50	8,90	11,50	14,00	11,50	14,00
Potenza assorbita totale (1)	kW	2,19	2,17	2,74	3,77	5,09	3,77	5,09
EER (1)		3,10	3,45	3,25	3,05	2,75	3,05	2,75
SEER (2)		5,32	5,86	5,55	5,19	5,12	5,19	5,12
ηsc ⁽²⁾		210	231	219	204	202	204	202
Portata acqua (1)	l/h	1170	1290	1531	1978	2408	1978	2408
Prevalenza utile pompa bassa prevalenza OR (1)	kPa	84	82	77	64	49	64	49
Potenza termica (3)	kW	6,40	8,20	10,0	12,0	15,0	12,0	15,0
Potenza assorbita totale (3)	kW	1,68	2,13	2,74	3,24	4,48	3,24	4,48
COP (3)		3,80	3,85	3,65	3,70	3,35	3,70	3,35
SCOP (4)		4,89	5,19	5,07	4,67	4,59	4,67	4,59
nsh (4)		193	204	200	184	181	184	181
Classe di efficienza energetica in riscaldamento (5)		A+++	A+++	A+++	A+++	A+++	A+++	A+++
SCOP (6)		3,82	3,82	3,82	3,62	3,57	3,62	3,57
ηsh ⁽⁶⁾		150	150	150	142	140	142	140
Classe di efficienza energetica in riscaldamento (7)		A++	A++	A++	A++	A++	A++	A++
Portata acqua (3)	l/h	1101	1410	1720	2064	2580	2064	2580
Prevalenza utile pompa bassa prevalenza OR (3)	kPa	85	80	70	61	44	61	44
Potenza frigorifera (8)	kW	6,50	8,30	10,0	12,0	16,0	12,0	16,0
Potenza assorbita totale (8)	kW	1,27	1,61	2,11	2,67	4,10	2,67	4,10
EER (8)		5,10	5,15	4,75	4,50	3,90	4,50	3,90
Potenza termica (9)	kW	6,20	8,40	10,0	12,0	15,0	12,0	15,0
Potenza assorbita totale (9)	kW	1,27	1,68	2,13	2,50	3,41	2,50	3,41
COP (9)	KVV	4,90	5,00	4.69	4,80	4,40	4,80	4,40
		4,30	3,00	4,09	4,00	4,40	4,00	4,40
Alimentazione elettrica			2	230V/1/50H	Z		400V/3-	N/50Hz
Corrente assorbita max	Α	15,0	19,0	19,0	11,0	11,0	31,0	31,0
Capacità vaso di espansione	dm ³	8	8	8	8	8	8	8
Livello di potenza sonora (10)	dB(A)	58	60	61	65	69	65	69
Peso di esercizio macchina con pompa	kġ	90	117	117	135	135	137	137

- Temperatura aria esterna 35 °C, temperatura acqua 12 °C / 7 °C (EN14511:2022)
- I valori di efficienza η in riscaldamento e raffreddamento si calcolano rispettivamente con le seguenti formule: $[\eta = SCOP/2, 5 F(1) F(2)] = [\eta = SEER/2, 5 F(1) F(2)]$.
- Temperatura aria esterna 7 °C bulbo secco / 6 °C bulbo umido, temperatura acqua 40 °C / 45 °C (EN14511:2022)
- I valori di efficienza η in riscaldamento e raffreddamento si calcolano rispettivamente con le seguenti formule: [η = SCOP / 2,5 F(1) F(2)] e [η = SEER / 2,5 F(1) F(2)].

Condizioni bassa temperatura.

(5) Classe di efficienza energetica stagionale del riscaldamento d'ambiente a BASSA TEMPERATURA in condizioni climatiche AVERAGE [REGOLAMENTO (UE) N. 811/2013] (6) I valori di efficienza η in riscaldamento e raffreddamento si calcolano rispettivamente con le seguenti formule: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)].

Condizioni media temperatura.

- Classe di efficienza energetica stagionale del riscaldamento d'ambiente a MEDIA TEMPERATURA in condizioni climatiche AVERAGE [REGOLAMENTO (UE) N. 811/2013]
- Temperatura aria esterna 35 °C, temperatura acqua 23 °C/18 °C (EN14511:2022)
 Temperatura aria esterna 7 °C bulbo secco / 6 °C bulbo umido, temperatura acqua 30 °C / 35 °C (EN14511:2022)
- (10) Determinata da misurazioni effettuate in accordo con ISO 9614