Pompes à chaleur haute température pour le chauffage, le refroidissement et la production d'eau chaude sanitaire

DÉDUCTION FISCALE

EXÉCUTION MONOBLOC

JUSQU'À 75°C

COMPRESSEUR ROTATIF EC

GESTION EXTERNE
DE LA VANNE 3 VOIES

CONDITIONNEMENT

HAUTE EFFICACITÉ EN CHAUFFAGE

ECS HAUTE Température

Caractéristiques techniques et constructives

HPE R290 06÷16T est une gamme de pac de 5 tailles de puissance et 7 modèles, avec un inverseur de dernière génération. Le compresseur est capable de satisfaire les demandes de puissance frigorifique, calorifique et ECS.

Les pompes à chaleur HPE R290 garantissent des performances élevées avec de larges plages de fonctionnement.

Les rendements saisonniers élevés et le très faible GWP en font le produit idéal pour atteindre le bien-être thermo-hygrométrique tout en respectant pleinement l'environnement.

Tous les modèles, qui accèdent à l'allégement fiscal offert par la législation en vigueur, exploitent certaines des technologies les plus innovantes dans le domaine de la climatisation : les unités sont en fait des inverseurs complets et l'utilisation intensive de moteurs électriques à aimants permanents entraînés par des inverseurs de courant se poursuit également dans les composants accessoires tels que les ventilateurs et le circulateur hydraulique, permettant de réduire considérablement la puissance électrique absorbée. Le tableau électrique hermétiquement fermé garantit également une plus grande fiabilité et sécurité.

Grâce aux stratégies de gestion avancées mises en œuvre, l'électronique de contrôle intègre le fonctionnement des composants clés des unités, optimisant l'interaction entre les parties principales : compresseur, ventilateur et circulateur hydraulique.

Le R290 (propane) est un réfrigérant naturel.

Sa très faible valeur GWP, égale à 3, en fait la solution optimale pour contribuer à réduire l'impact environnemental des gaz à effet de serre et donc le réchauffement climatique.

De plus, grâce à ses caractéristiques techniques, il permet d'élargir la gamme de travail des pompes à chaleur, permettant leur utilisation même dans des conditions extrêmes et très difficiles, garantissant la production d'eau à haute température.

Nous parvenons à garantir une température de sortie d'eau de 50° C même avec des températures extérieures de -25°C, atteignant un maximum de 75°C à partir de -10°C.

- Compresseur bi-rotatif entraîné par moteur électrique EC
- Pompe hydraulique EC
- Ventilateur axial EC
- Stratégies avancées de régulation et de gestion des plantes
- Réfrigérant naturel à très faible GWP

Model	Cooling power kW	Heatimg power kW	Code	€
HPE R290 06 INVERTER	6,80	6,40	37980086	7.998,00
HPE R290 08 INVERTER	7,50	8,20	37980087	8.568,00
HPE R290 10 INVERTER	8,90	10,0	37980088	8.865,00
HPE R290 12M INVERTER	11,5	12,0	37980089	11.143,00
HPE R290 12T INVERTER	11,5	12,0	37980090	11.650,00
HPE R290 16M INVERTER	14,0	15,0	37980091	11.900,00
HPE R290 16T INVERTER	14,0	15,0	37980092	12.392,00

Pompes à chaleur haute température pour le chauffage, le refroidissement et la production d'eau chaude sanitaire

Accessoires HPE R290 06÷16T INVERTER

Code

€

Puffer POWER UNIT Stockage d'eau technique inertiel compact fourni standard avec robinet de vidange, jolly valve et valve de sécurité

POWER UNIT 80 LT - H 160	76011500	1.580,00
POWER UNIT 105 LT - H 210	76012500	1.680,00
POWER UNIT 130 LT - H 250	76011501	1.740,00
POWER UNIT 165 LT - H 160 D.	76011505	1.890,00
POWER UNIT 220 LT - H 210 D.	76012502	1.990,00
POWER UNIT 315 LT - H 170	76012503	2.100,00

Modèle	U.M.	80 LT	105 LT	130 LT	165 LT D.	220 LT D.	315 LT
Largeur totale	mm	340,5	340,5	340,5	594,6	594,6	803,4
Profondeur totale	mm	340,5	340,5	340,5	340,5	340,5	461,1
Hauteur totale	mm	1656,2	2156,2	2524,3	1656,2	2156,2	1690,0
Attaques de PAC		1" 1/4 x 2					
Connexions du circuit secondaire		1" 1/4 x 2					
Connexions de résistance électrique		1" 1/2 x 2					
Raccordement de la vanne Jolly		3/8"	3/8"	3/8"	3/8"	3/8"	3/8"
Raccordements soupapes sécurité		1/2" x 2					
Raccordements robinets de vidange		1/2" x 2					
Puits porte-sonde		1/2" x 3					
Volume	I	79,2	105,0	132,0	166,5	224,4	314,2
Poids à vide	kg	57,4	74,7	86,9	102,0	121,0	230,0

WP1 V ballon de stockage Chaudière en vitrocéramique avec échangeur surdimensionné pour pompe à chaleur

WP1 V 200 I	37304007	1.630,00
WP1 V 300 I	37304000	2.250,00
WP1 V 400 I	37304001	2.830,00
WP1 V 500 I	37304002	3.100,00
WP1 V 600 I	37304003	3.550,00
WP1 V 800 I	37304004	4.300,00
WP1 V 1000 I	37304005	4.490,00
WP1 V 1500 I	37304006	7.640,00

Modèle	U.M.	200	300	400	500	600	800	1000	1500
Diamètre extérieur*	mm	550	600	750	750	750	1050	1050	1260
Hauteur totale	mm	1320	1610	1410	1660	1910	1750	2110	2115
Echangeur pac	m ²	2,1	3,5	4,5	5,7	5,7	6,0	6,0	7,50
Recirculation connec	tions	1/2"	1/2"	1/2"	1/2"	1/2"	1"	1"	1"
Entrée pac		1"	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4
Sortie pac		1"	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4
Poids à vide	kg	78	110	133	159	167	215	251	383

^{*}Toute l'isolation est amovible sauf pour les modèles de 200 à 600 litres

WP2 V ballon de stockage Chaudière en verre émaillé avec échangeur majoré pour pompe à chaleur et échangeur solaire thermique

WP2 V 300 I	37304298	2.660,00
WP2 V 400 I	37304299	2.880,00
WP2 V 500 I	37304300	3.480,00
WP2 V 600 I	37304301	4.310,00
WP2 V 800 I	37304302	4.720,00
WP2 V 1000 I	37304303	5.490,00
WP2 V 1500 I	37304304	8.570,00

Modèle	U.M.	300	400	500	600	800	1000	1500
Diamètre extérieur*	mm	500	650	650	650	790	790	1000
Hauteur totale	mm	1610	1410	1660	1910	1750	2110	2115
Échangeur inf. Soleil	m ²	1,0	1,2	1,5	2,0	2,0	3,3	3,6
Echangeur pac sup.	m ²	2,4	3,0	4,2	5,0	5,2	6,0	7,5
Recircul. connections		1/2"	1/2"	1/2"	1/2"	1"	1"	1"
Entrée pac		1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4
Sortie pac		1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4
Poids vide	Kg	108	128	159	188	234	285	417

^{*}Toute l'isolation est amovible sauf pour les modèles de 300 à 600 litres

Pompes à chaleur haute température pour le chauffage, le refroidissement et la production d'eau chaude sanitaire

Accessoires HPE R290 06÷16T INVERTER

Code

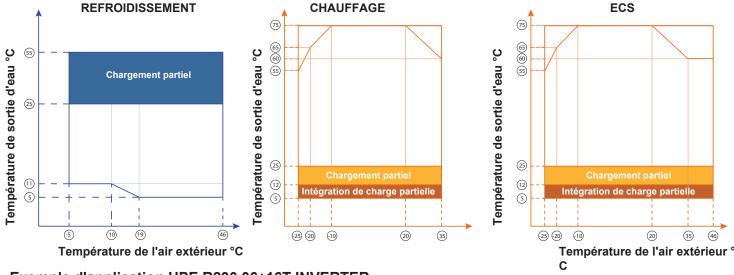
€

Télécommande murale filaire avec capteur de température, programmation hebdomadaire, gestion des paramètres de fonctionnement, affichage des codes d'erreur, fonction smart grid et module wi-fi intégré pour un contrôle et une surveillance gérable via application

inclus

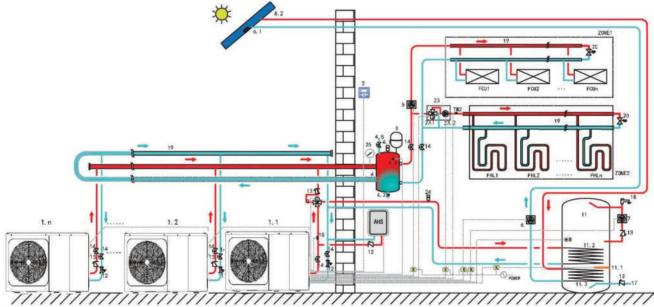
3-vanne de voie pour ECS

37980095 538,00

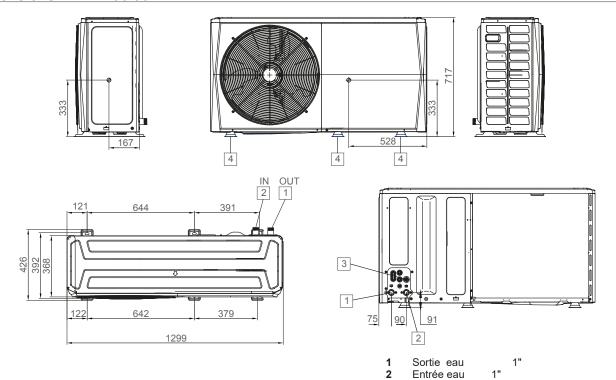


3-actionneur de vanne de voie

37980094 464,00

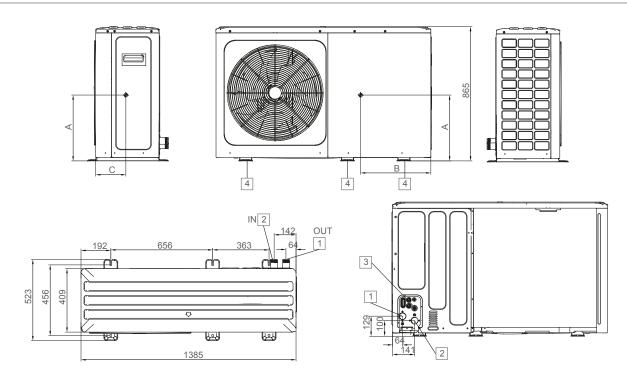

Plage de travail étendue pour chaque application

Les pompes à chaleur HPE R290 06÷16T INVERTER ont été conçues pour garantir une flexibilité max. dans chaque application. Grâce à la plage de travail étendue, qui garantit un fonctionnement même dans des climats particulièrement rigoureux et permet la production d'eau chaude jusqu'à un max. de 75°C, et aux logiques de régulation avancées offertes par la nouvelle commande électronique, ils sont en mesure de garantir à la fois le chauffage en hiver et la climatisation en été, ainsi que la production d'énergie thermique destinée à la production d'ECS. Grâce à l'utilisation de propane, HPE R290 06÷16T INVERTER est capable de garantir de l'eau chaude à 55°C avec une température extérieure de -25°C, jusqu'à un max de 75°C avec une temp. extérieure min. de -10° C.



Exemple d'application HPE R290 06÷16T INVERTER

Avec HPE R290 06÷16T INVERTER, il sera possible de connecter jusqu'à 6 machines en cascade et de gérer jusqu'à deux zones différentes. En même temps, il est possible de gérer une vanne à trois voies externe pour gérer la production d'eau chaude sanitaire.



Dimensions HPE R290 06 INVERTER

Dimensions HPE R29008÷16T INVERTER

Modèle	Α	В	С	
	mm	mm	mm	
HPE R290 08 INVERTER	360	550	234	
HPE R290 10 INVERTER	360	550	234	
HPE R290 12M INVERTER	415	715	200	
HPE R290 12T INVERTER	415	715	200	
HPE R290 16M INVERTER	415	715	200	
HPE R290 16T INVERTER	415	715	200	

- 1 sortie d'eau utilisateur 1" 1/4
- 2 entrée d'eau utilisateur 1" 1/4
- 3 Sortie soupape de sécurité 16 mm
- 4 Support anti-vibration

Tableau des données techniques HPE R290 06÷16T INVERTER

DESCRIPTION	U.M.	06	08	10	12M	16M	12T	16T
Puissance de refroidissement (1)	kW	6,80	7,50	8,90	11,50	14,00	11,50	14,00
Puissance totale absorbée (1)	kW	2,19	2,17	2,74	3,77	5,09	3,77	5,09
EER (1)		3,10	3,45	3,25	3,05	2,75	3,05	2,75
SEER (2)		5,32	5,86	5,55	5,19	5,12	5,19	5,12
ηsc ⁽²⁾		210	231	219	204	202	204	202
Dèbit d'eau (1)	I/h	1170	1290	1531	1978	2408	1978	2408
Tête utile de pompe basse hauteur OR (1)	kPa	84	82	77	64	49	64	49
Puissance de chauffage (3)	kW	6,40	8,20	10,0	12,0	15,0	12,0	15,0
Puissance totale absorbée (3)	kW	1,68	2,13	2,74	3,24	4,48	3,24	4,48
COP (3)	1000	3,80	3,85	3,65	3,70	3,35	3,70	3,35
SCOP (4)		4,89	5,19	5,07	4,67	4,59	4,67	4,59
nsh (4)		193	204	200	184	181	184	181
Classe d'efficacité énergétique du chauffage (5)		A+++	A+++	A+++	A+++	A+++	A+++	A+++
SCOP (6)		3,82	3,82	3,82	3,62	3,57	3,62	3,57
ηsh ⁽⁶⁾		150	150	150	142	140	142	140
Classe d'efficacité énergétique du chauffage (7)		A++	A++	A++	A++	A++	A++	A++
Dèbit d'eau (3)	l/h	1101	1410	1720	2064	2580	2064	2580
Tête utile de pompe basse hauteur OR (3)	kPa	85	80	70	61	44	61	44
Puissance de refroidissement (8)	kW	6,50	8,30	10,0	12,0	16,0	12,0	16,0
Puissance totale absorbée (8)	kW	1,27	1,61	2,11	2,67	4,10	2,67	4,10
EER (8)		5,10	5,15	4,75	4,50	3,90	4,50	3,90
Puissance de chauffage ⁽⁹⁾	kW	6,20	8,40	10,0	12,0	15,0	12,0	15,0
Puissance totale absorbée (9)	kW	1,27	1,68	2,13	2,50	3,41	2,50	3,41
COP (9)	IXVV	4,90	5,00	4,69	4,80	4,40	4,80	4,40
001 (7)		7,50	0,00	7,00	7,00	7,40	4,00	7,40
Alimentation électrique			2	230V/1/50H	Z		400V/3-	N/50Hz
Courant absorbé max	Α	15,0	19,0	19,0	11,0	11,0	31,0	31,0
Capacité du vase d'expansion	dm ³	8	8	8	8	8	8	8
Niveau de puissance sonore (10)	dB(A)	58	60	61	65	69	65	69
Poids opérationnel de la machine avec pompe	kg	90	117	117	135	135	137	137

⁽¹⁾ Température de l'air extérieur 35 °C, température de l'eau 12 °C / 7 °C (EN14511:2022)

Conditions de basse température.

Conditions de température moyenne.

(10) Déterminé à partir de mesures effectuées conformément à la norme ISO 9614

⁽²⁾ Les valeurs d'efficacité η en chauffage et en refroidissement sont calculées respectivement avec les formules suivantes : [η = SCOP / 2,5 - F(1) - F(2)] et [η = SEER / 2,5 - F (1) - F (2)]. (3) Température de l'air extérieur 7 °C bulbe sec / 6 °C bulbe humide, température de l'eau 40 °C / 45 °C (EN14511:2022)

⁽⁴⁾ Les valeurs d'efficacité η en chauffage et en refroidissement sont calculées respectivement avec les formules suivantes:[η = SCOP/2,5-F(1) - F(2)] et [η = SEER/ 2,5 - F (1) - F (2)].

⁽⁵⁾ Classe d'efficacité énergétique saisonnière du chauffage des locaux à BASSE TEMPÉRATURE dans des conditions climatiques MOYENNES [RÈGLEMENT (UE) N° 811/2013] (6) Les valeurs d'efficacité η en chauffage et en refroidissement sont calculées respectivement avec les formules suivantes: [η = SCOP/2,5-F(1) - F(2)] et [η = SEER / 2,5-F(1) - F (2)].

⁽⁷⁾ Classe d'efficacité énergétique saisonnière pour le chauffage des locaux à TEMPÉRATURE MOYENNE dans des conditions climatiques

MOYENNES [RÈGLEMENT (UE) n° 811/2013][8] Température de l'air extérieur 35 °C, température de l'eau 23 °C / 18 °C (EN14511:2022) (9) Température de l'air extérieur 7 °C bulbe sec / 6 °C bulbe humide, température de l'eau 30 °C / 35 °C (EN14511:2022)